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ABsTRACT; How biological processes such as reproduction and dis-
persal relate to the size of species’ geographic ranges constitutes a
major challenge in spatial ecology and biogeography. Here we develop
a spatially explicit theoretical framework that links fundamental
population-level ecological traits (e.g., rates of dispersal and popu-
lation growth or decay) with landscape heterogeneity to derive es-
timates of species’ geographic range sizes and, further, distributions
of geographic range sizes across species. Although local (patch-scale)
population dynamics in this model are completely deterministic, we
consider a fragmented landscape of patches and gaps in which the
spatial heterogeneity is itself stochastic, This stochastic spatial struc-
ture, which juxtaposes landscape-level patch and gap characteristics
against population-level critical patch sizes and maximum gap-
crossing abilities, determines how far a novel species can spread from
its evolutionary origin. Given reasonable assumptions about land-
scape structure and about the distribution of critical patch sizes and
critical gap lengths among species, we obtain distributions of geo-
graphic range sizes that are qualitatively similar to those routinely
found in nature (e.g., many species with small geographic ranges).
Collectively, our results suggest that both interspecific differences in
population-level traits and the landscapes through which species
spread help determine patterns of occupancy and geographic extent.

Keywords: critical patch size, gap-crossing ability, geographic range
size, range expansion, spatial heterogeneity.

Introduction

Interactions among habitat availability, biological pro-
cesses, and physical factors determine the size of species’
geographic ranges and the location of species’ geographic
range boundaries. Empirical data on geographic range sizes
make clear that environmental thresholds (e.g., Cabrera
1996), gradients (e.g., Virgos and Casanovas 1999), and
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spatially varying physical processes (e.g., Gaylord and
Gaines 2000) can all act as determinants of species’ bound-
aries. Of these issues, environmental gradients have re-
ceived the most attention from theoreticians, often in con-
junction with studies of the spatial dynamics of
evolutionary clines (Barton and Bengtsson 1986; Pialek
and Barton 1997).

In contrast, the effects of discontinuous spatial variation
(i.e., patchy landscapes) on species’ boundaries have re-
ceived relatively less attention. Nonetheless, some perti-
nent results about range limits in discontinuous landscapes
are available. For example, metapopulation dynamics act-
ing across an environmental gradient may enforce a spe-
cies’ range limit (Carter and Prince 1981, 1987; Holt et
al. 2005). Likewise, a partial dispersal barrier may prevent
competitive exclusion and facilitate stable parapatric
boundaries (Goldberg and Lande 2007). In a discretized
landscape, species’ range limits can emerge even in the
absence of clear environmental gradients via the mecha-
nism of “invasion pinning” (Keitt et al. 2001), in which
Allee dynamics, coupled with fine-scale patchiness, limit
the spatial advance of a spreading species. In an important
step toward unification, Holt et al. (2005) proposed that
a small set of demographic mechanisms related to spatial
variation in population dynamic parameters (e.g., birth,
death, and dispersal rates) may collectively determine the
spatial position of species’ range boundaries under many
conditions.

Overall, the issue of species’ boundaries can be viewed
from two complementary perspectives: (1) what processes
initially limit the spatial expansion of a novel species
(Webb and Gaston 2000; Keitt et al. 2001) and (2) what
processes govern the long-term size and occupancy of a
species’ geographic range (Gaston 2003). Building on ideas
of Keitt et al. (2001), we adopt the “initial expansion”
perspective on geographic range dynamics to explore how
landscape heterogeneity influences species range bound-
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aries. However, unlike Keitt et al. (2001), who assumed
the environment to be homogeneous or to have a direc-
tional gradient in quality, we assume here that the envi-
ronment is heterogeneous, with the heterogeneity itself
being stochastic. As a result, our efforts converge on a
“landscape ecology of species spread,” as outlined by With
(2002).

Because the initial expansion perspective on species’
boundaries shares its theoretical foundations with models
of invasion dynamics (Shigesada and Kawasaki 1997), re-
sults from invasion theory are highly relevant here. A com-
mon theme in theoretical investigations of invasion dy-
namics is to quantify the speed of the invasion, that is,
the rate at which spatial spread occurs. For example, using
reaction-diffusion (RD) models, Shigesada et al. (1986)
demonstrated how habitat heterogeneity (characterized as
an alternating sequence of good and bad habitat patches
of fixed sizes) could slow the progress of a traveling wave
of invasion. Dewhirst and Lutscher (2009) have analyzed
a similar spatial setup for cases of discrete-time integro-
difference equations, obtaining an estimate of the frag-
mentation threshold necessary for an invasion to propa-
gate (i.e., the minimum percentage of good habitat that
allows population spread; see also With 2002). Several
other studies have examined aspects of invasion dynamics
in situations with spatial variation in population growth
but not dispersal ability (Van Kirk and Lewis 1997; Bots-
ford et al. 2001; Kawasaki and Shigesada 2007).

However, unlike most previous investigations of spatial
spread, we focus here not on quantifying the rate of spread
but instead on the maximum distance covered by a species
that is expanding its range in a heterogeneous landscape.
As we discuss below, we eschew the traveling-wave for-
malism that is standard in theoretical studies of invasion
dynamics in favor of the critical patch size perspective on
ecological dynamics in patchy systems (Skellam 1951;
Kierstead and Slobodkin 1953; Cantrell et al. 2001). In
what follows, we introduce a modeling approach that com-
bines basic life-history traits with information on the
patchiness of a landscape to estimate the size of a particular
species’ geographic range. Our efforts speak directly to the
problem of nonequilibrial geographic range dynamics, in-
cluding effects of landscape heterogeneity and Allee effects,
a set of topics that has been identified as a major challenge
in spatial ecology and biogeography (Holt et al. 2005)

We then extend the analysis to illustrate how one can
obtain a multispecies distribution of geographic range sizes
for a particular landscape. As such, our modeling efforts
provide a novel route linking population biological traits
to geographic range size distributions via the initial ex-
pansion perspective on geographic ranges. Consequently,
our analysis complements but contrasts with models such
as those of Gaston and He (2002) that focus on stochastic

variations in range size occurring after the initial phase of
spreading,

Empirical syntheses suggest that within major taxa (i.e.,
groups of species [such as waterfowl or pine trees] that,
by virtue of shared evolutionary heritage, exhibit a diverse
but not extreme range of life-history traits), geographic
range sizes are strongly right (positively) skewed. In his-
tograms of geographic range size for major taxa, the left-
most category is typically the modal category (Brown et
al. 1996; Gaston 2003). Consequently, as a final step we
identify some conditions under which particular distri-
butions of life-history traits will yield geographic range
size distributions like those commonly observed in nature.

Model Setup

We seek to understand how ecological attributes of a spe-
cies, specifically the minimum patch size needed for pop-
ulation persistence and the maximum gap length across
which dispersal is possible, interact with landscape het-
erogeneity to determine how far that species can be ex-
pected to spread from its area of evolutionary origin and
thus how big a geographic range that species is likely to
attain. In this scenario, species expected to spread only
short distances would likely be “endemics,” whereas spe-
cies expected to spread great distances would likely attain
large geographic ranges.

Our modeling approach envisions a landscape as a one-
dimensional environment consisting of alternating patches
and gaps whose sizes are drawn from some specified dis-
tribution. This is a more generalized perspective than that
used in previous studies of spatial spread in heterogeneous
landscapes; those studies treated habitat heterogeneity as
alternating pairs of good- and bad-quality patches of fixed
size (Shigesada et al. 1986; Van Kirk and Lewis 1997; Bots-
ford et al. 2001; Berestycki et al. 2005; Kawasaki and Shi-
gesada 2007; Dewhirst and Lutscher 2009).

Given a set of biological parameters such as dispersal
rates and birth or death rates, we derive a distribution for
the distance that a species with those parameters could
spread. How far, specifically, such a species could spread
would depend on the particular landscape (and starting
point). Finally, by considering the population parameters
for different species as being drawn from some distribu-
tion, we derive a distribution for the frequency of species’
geographic ranges along the axis from endemic to wide-
spread. Our approach allows us to link expected range size
of a species to parameters describing that species’ dispersal
and demography. We make this link by using simple RD
models to obtain characteristics of minimum patch size
and maximum gap length that we can then feed into the
landscape model and thus predict the distance that the
species can spread in any given landscape realization. The



combined RD-landscape model can be parameterized us-
ing distributions of species’ life-history traits together with
information about the spatial heterogeneity of a landscape.

Our model development hinges on several foundational
concepts in spatial ecology. First, we require that there
exists a “minimum patch size” needed for population per-
sistence. This concept is a standard one in theoretical ecol-
ogy, going back to Skellam (1951) and Kierstead and Slo-
bodkin (1953), and a wide variety of empirical studies
document the importance of patch size for population
persistence (Groom 1998; Hanski 1998). Second, we re-
quire that the connectivity between two habitat patches
depends on the size of the gap between those patches.
Urban and Keitt (2001) clearly describe how dispersal be-
tween patches can depend on gap length. Third, we require
that the founding population of a species in a habitat patch
reach some minimum density to successfully colonize that
patch. This idea, which corresponds to a kind of Allee
effect, has been observed in a variety of empirical systems
(Veit and Lewis 1996; Johnson et al. 2006; Tobin et al.
2007) and has been built into spatially explicit models for
island colonization (Cantrell et al. 1996) and for the es-
tablishment of geographic range boundaries via invasion
pinning (Keitt et al. 2001).

Analysis

To characterize minimum patch size we will use a simple
RD model (Skellam 1951; Kierstead and Slobodkin 1953).
If a population inhabits a patch of length L (distance),
disperses through it with diffusion rate D (distance’
time™'), increases with local intrinsic growth rate r
(time™"), and has local carrying capacity K, then the pop-
ulation density 4 within the patch satisfies the relation

, 1
dr 9x* K 2

du du’ u

oz [ ru(l —*)
for 0 < x < L. If individuals that reach the boundary of the
patch always exit the patch, then equation (1) is aug-
mented with the boundary condition

u(0, 1) = u(L, 1) = 0. 2)

Solutions of equations (1) and (2) decay toward 0 if r —
D7?*/[* < 0 and grow toward a unique positive density if
r — D7*/L* > 0 (Cantrell and Cosner 2003). Thus, for pop-
ulation persistence we must have

L>L" = w\/jD-, 3)

r
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where L* is the minimum patch size needed for successful
persistence of the population.

Although we have focused this particular derivation of
a species’ critical patch size (i.e, diffusion-mediated loss
across the patch boundary), we note that there are several
alternative routes to a critical patch size that might be
substituted for species that possess dispersal behaviors
more sophisticated than simple diffusion. These mecha-
nisms include (1) scenarios where there is within-patch
habitat heterogeneity (Cantrell and Cosner 2001) or where
a species tends to move toward or away from edges or up
or down spatial gradients (Cantrell and Cosner 1991), (2)
situations where the regrowth capacity of a species scales
with patch size (Cantrell et al. 2005), and (3) cases where
a species as a whole suffers from an Allee effect but in-
dividuals defend home ranges, placing limits on the num-
ber of individuals that can be packed into a given patch.

We use a model similar to equation (1) to describe the
expected density of a population in a gap of matrix habitat
between patches, but we also incorporate the idea that
there is a minimum rate at which individuals must arrive
at the next patch for colonization to succeed. The notion
that propagule pressure influences colonization success is
widely supported from both theoretical and empirical
viewpoints (Lockwood et al. 2005; Drake and Lodge 2006).
Suppose that a population inhabits an isolated patch at
density K, disperses through the matrix outside the patch
by diffusion at rate d, and experiences mortality in the
matrix at rate s. The propagule density v in the matrix can
then be described by

o o0’
e @

with boundary condition
(0,1 = K. )

The unique bounded equilibrium of equations (4) and (5)
is v(x) = Kexp [—x(s/d)"*]. We use m to indicate the min-
imum average propagule density needed for successful col-
onization of a new patch. As such, m can thus be thought
of as a type of Allee threshold necessary for invasion suc-
cess (Lewis and Kareiva 1993; Veit and Lewis 1996). If the
new patch is at distance / from the original patch, suc-
cessful colonization requires Kexp [—I(s/d)'?] > m, which
can be rewritten as

<l = 1n(5)\ﬁ, 6)
1 N

where [* is the maximum gap length that the species can



366 The American Naturalist

be expected to cross successfully. A model similar to equa-
tions (4) and (5) was used by Cantrell et al. (1996) as part
of a spatially explicit model for a species colonizing an
island. The idea that the rate of successful colonization
decreases exponentially with distance from a source, which
we have adopted here, is a common assumption in eco-
logical theory and is a mainstay of both island biogeog-
raphy theory (MacArthur and Wilson 1967) and meta-
population theory (Hanski 1998).

To describe the landscape that a spreading species might
encounter, we assume that the overall environment con-
sists of an alternating series of patches and gaps whose
lengths are drawn from distributions that reflect the large-
scale structure of the landscape. Specifically, we assume
that each realization of the landscape starts with a patch
of length L,, which is followed by a gap of length I, which
is followed by a patch of length L,, then a gap of length
L, and so on, with patches and gaps alternating (fig. 1).
We assume that the species we are considering will spread
until it reaches a patch too small to support a population,
that is, L, < L*, or a gap too large to cross, that is, [, >
I

Note that as we develop it here, the full model does not
allow a species to “jump over” (i.e., bypass) a nearby small
patch and still colonize a sufficiently large patch down-
stream. However, we address this issue in the example
cases, where we work with what amount to upper and
lower bounds on a species’ geographic range size. In cases
1 and 2, we consider the situation where there are no
critical patch size effects and any patch can be effectively
bypassed by a spreading species. In these upper-bound
scenarios, we develop geographic range size distributions
using an overestimate of each species’ geographic range
size. Later, in case 3, we consider a corresponding lower-
bound scenario, in which a spreading species cannot jump

Evolutionary
Origin

over a nearby small patch. We return to this important
topic in “Discussion.”

Asgsume that (L,),,, and (l),», are sequences of inde-
pendent identically distributed random variables. We de-
fine

7, = min{n: L,< L'},

mini{n: I,>1"}, 7

o
1

7 = minin, 7,}.

The distance that a species will spread in the positive di-
rection from x = 0 is then ©, = 3__, (L; + ). The initial
geographic range of species i after it has spread across the
landscape would then be ©, = ©, + ©,,, where 0, is a
second random variable, independent of ©, but with the
same distribution, representing spread in the negative di-
rection. For any given parameter set describing the min-
imum patch size L} and the maximum gap length I} for
species i, the geographic range size ©, will be a random
variable with a distribution depending on the life-history
parameters that determine the critical patch size and max-
imum gap length for species i

In table 1 we recapitulate all of the key life-history pa-
rameters that together determine a species’ critical patch
size and maximum gap length, along with a qualitative
summary of how an increase in the magnitude of a given
life-history trait would affect a species’ critical patch size,
maximum gap length, and geographic range size. Note that
all of the life-history parameters enter the calculations of
critical patch size and maximum gap length (eqq. [3], {6])
in a sublinear fashion, such that a doubling (or halving)
of the magnitude of a particular trait will translate into a
less than linear increase or decrease in the patch size or
gap length thresholds.

Pigure 1: Schematic of the model setup for our analysis of geographic range size. Patch sizes and gap widths vary stochastically across the landscape,
As it expands outward from its evolutionary origin, species A cannot persist on patch L, (minimum patch size L > L;). In contrast, species B has
a different suite of life-history traits and can persist on patch L, but cannot cross gap /, (maximum gap width [; < I,). Consequently, species A has

a geographic range smaller than that of species B (lines).
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Table 1: Key parameters linking life history to geographic range size

Consequences of an increase in

parameter value on CPS,
Parameter Interpretation MGL, and GRS
T Population growth rate in habitat patches Decreases CPS and increases GRS
D Diffusion rate in habitat patches Increases CPS and decreases GRS
s Death rate in matrix gaps Decreases MGL and decreases GRS
d Diffusion rate in matrix gaps Increases MGL and increases GRS
K Carrying capacity (as a density) in patches Increases MGL and increases GRS
m Minimum propagule density at patch edge necessary for Decreases MGL and decreases GRS
successful colonization
L* = «/Dir Minimum patch size to support a population Decreases GRS
I = In(K/m)dls Maximum gap length across which colonization is possible Increases GRS
E, Mean patch size in the landscape Increases GRS
€ Mean gap length in the landscape Decreases GRS
o, Geographic range size of species i
Note: CPS = critical patch size; MGL = maximum gap length; GRS = geographic range size.
Next, we assume that the parameters describing mini- with
mum patch size and maximum gap length are distributed
among a pool of species; thus, quantities such as the mean Er) = 1 ©

and variance of the range size (E(©;) and V(8)), respec-
tively) will themselves be treated as random variables that
differ among species. Given a distribution of dispersal and
demographic parameters across a species pool, we can
then, in principle, compute the probability Pr(a <
E(©,) £ b), which can be interpreted as giving a distri-
bution of the probability that a species i drawn from the
pool of candidates will be endemic, widespread, or in be-
tween. Table 1 summarizes all parameters involved in the
development of this model.

A Brief Sketch of Model Analysis Necessary to
Derive a Species’ Geographic Range Size

The analysis and justification of the model presented above
(eqq. [1]-{7]) depend on results from probability theory.
We will sketch the results of the analysis in this section,
leaving detailed derivations and justifications for appendix
A in the online edition of the American Naturalist. We will
denote the probability of an event e as Pr{e). The first key
observation is that 7,, 7, and 7 in equation (7) are stopping
times, so they can be treated as random variables. Let E
and V denote the mean and variance, respectively. For
independent random variables X and Y, EX+Y) =
E(X)+ E(Y) and V(X-+Y) = V(X)-+ V(Y). Thus,
E(©) = E©, +0,) = 2E(©,) and V(©) = 2V(©,). If L
denotes a random variable with the same distribution as
the patch sizes in our model and [ is a random variable
with the same distribution as the gap lengths, then

E©) = 2[E(L) + E(DIE@), (8)

L-Pr(L=L)Pr{igl)

where L} and I are the minimum patch size (eq. [3]) and
maximum gap length (eq. [6]) of species 4, respectively.
(This assumes that Pr(L > L})Pr(I<1I’) <1; otherwise
E(7) is infinite.) Thus,

2[E(L) + E()]

E®) = T3 as mpr< 1) (10
Similarly, we have
V(0) = 2{[E(L) + EM*V(7) + [V(L) + VIDIE@)L (1)
with

Vi) = Pr(L=L)Pr(g]) 12)

L—Pr(L>L)Pri< i

Using equations (8)-(12), we can compute the mean and
variance of the geographic range size for species i, ©, if
we know L%, I, and the landscape distributions of L and
L

Extending the Model to Multiple Species to
Characterize Geographic Range Size Distributions

Equations (8)—(12) are general results that hold for a wide
range of landscapes (defined by distributions of L and ])
and for a wide range of species (whose critical patch size
and gap-crossing ability are determined for species i by r;
and D, in habitat patches, s; and d; in the matrix, and the
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colonization constraints m,/K;). To explore the effects that
particular assumptions about landscapes and species pools
have on the distribution of geographic range size, we pre-
sent three cases here. In each of these cases we make as-
sumptions about the distributions of patch and gap lengths
in the landscapes and the distributions of critical patch
sizes and maximum gap lengths among species. Most com-
monly we assume that these landscape components and
interspecific thresholds are distributed exponentially, and
before proceeding, we provide some justification for these
assumptions.

Situations in which patch sizes and/or gap lengths are
approximately exponentially distributed appear repeatedly
in the landscape ecology literature, both from remote sens-
ing analyses of real landscapes and as a consequence of
standard assumptions in landscapes.generated for perco-
lation theory and other spatial analyses. Examples of ex-
ponential distributions occurring in binary (patch, non-
patch) landscapes include the size of snowfields (Bahr and
Meier 2000), the size of patches created by forest fires
(Cumming 2001), analyses of forest patch (gap) structure
in temperate (Keitt et al. 1997) and tropical (Lawton and
Putz 1988) forests, and patch sizes and interpatch distances
in one-dimensional planktonic landscapes (Curriel et al.
1998). Patch size distributions that are approximately ex-
ponential in form are to be expected in random landscape
models with low to moderate percent habitat cover and a
high degree of habitat fragmentation (R. Gardner, personal
comrmunication). In a detailed analysis of a southern Cal-
ifornia landscape classified into many patch types (San
Bernardino Mountains), frequency is a monotonic and
strongly declining function of patch size on an arithmetic
axis (M. Neel, unpublished data). Distance to nearest
neighboring patch (of the same patch classification) ex-
hibits a similar shape.

Moving from landscapes to the distributions of inter-
specific traits, recent analyses yielding estimates of critical
patch size for 474 resident bird species and 163 mammal
species that live in native habitats in Costa Rica (Pereira
et al. 2004; Pereira and Daily 2006) both indicate mono-
tonic, steeply declining distributions of critical patch size
across species, so our assumption here that critical patch
sizes are distributed exponentially appears reasonable. Our
assumptions about how maximum gap-crossing ability is
distributed among species are arguably the most tenuous.
In a compilation of data on gap-crossing ability for selected
tropical species, Dale et al. (1994) reported many more
species with small or intermediate maximum gap lengths
than with large maximum gap lengths. Creegan and Os-
borne (2005) reported similar data for a suite of temperate
birds. Numerous other studies have examined gap-
crossing ability for individual taxa (e.g., Bakker and Van
Vuren 2004; van der Ree et al. 2004; Castellén and Sieving

2006). However, we are not aware of a systematic assess-
ment of the distribution of maximum gap length across
many species, as has been done for critical patch size.

Case 1: Exponentially Distributed Gap Lengths
If gap lengths follow an exponential distribution with

mean ¢, the probability density function for gap length is
I~ (1/e,) exp (—xle,) and

Pr<i)

Il
—
U
-

o)

ol

a2~
—
mll
3
LR . P

R

=

1 —exp (:li ), (13)
[}

where [} is the maximum gap length for species 7. Let E,
denote the mean patch size in the landscape. We next make
the further assumption that all habitat patches are ade-
quately large with probability 1. (Note that this assumption
implies that all species’ in-patch dispersal rates D, are small
enough and/or all species’ reproductive rates r; are large
enough to avoid any critical patch size constraints on spe-
cies’ geographic range sizes; eq. [3]). With this assumption,
equation (10) reduces to

I*
E(B) = 2(E, + e,) exp (—'—)

€q
In formulating our models we assume that any species
starts out by spreading into the initial patch and gap in
either direction. Thus, the expected range size is always at
least as large as the expected size of two patches plus two

gaps, that is, 2(E, + ¢,). Constraining a landscape thresh-
old B such that B> 2(E, + ¢,), then

Pr(E®,) > B) = Pril’ > ¢;ln . (19

e
2(E, + ¢,)

We now move from considering the landscape to fo-
cusing on the species pool. Equations (8)—(12) and hence
equations (13) and (14) should now be interpreted as
giving the conditional expectation and variance of ©, given
L7 and I7. With that interpretation we will retain our pre-
vious notation. If we assume that the critical gap lengths
I* are exponentially distributed among species with mean
", then equation (14) can be rewritten as
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Provided B > 2(E, + e,), the full multispecies distribution
of geographic range sizes can be obtained from equation
(15) and has the probability density function

[2(E, + ¢4)] cofe” g=(iealen), (16)

d[Pr (E©) < B)] _ (_e_u
dB et

which is a Pareto distribution (Johnson et al. 1994), The
function in equation (16) declines monotonically such
that, in a histogram, the leftmost category would be the
modal category, a pattern that agrees with empirical ob-
servations on geographic range size distributions (Brown
et al. 1996; Gaston 2003). Initially equation (16) declines
faster than exponential, but the function has a heavy tail
compared with an exponential distribution that (eventu-
ally) becomes apparent for large range sizes. The ratio
ele*, which appears three times in the probability density
function of range size given in equation (16), relates ¢,
the mean gap length in the landscape, to e, the mean
critical gap length among species, and is a crucial factor
that affects both the shape of the geographic range size
distribution and its spatial scale. In figure 2, we show how
a mere fourfold change in this key ratio may shift the
shape of the geographic range size distribution from a
scenario where almost all species are very narrowly dis-
tributed (<50 range size units) to one in which fully 20%
of species in the pool are geographically widespread (>200
range size units). Note that because this case does not
allow for any constraints on geographic range size due to
critical patch size, from the perspective of the underlying
life-history traits themselves, the key determinants of these
range size distributions are the ratio of in-matrix diffusion
rate to in-matrix mortality rate (d/s) and the ratio of car-
rying capacity to colonization threshold (K/ms; table 1; eq.

(61).

Case 2: An Alternative Distribution for Gap Lengths

Suppose instead that gap length [ has the distribution

-1 )
, 0

for o> 1. Expression (17) is a Pareto distribution with
mean e, and shape parameter o (Johnson et al. 1994).
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Figure 2: Geographic range size distribution derived from case 1 (eqq.
[15], [16]). Three parameter combinations are plotted that examine how
range size distribution depends on the ratio between the mean gap length
of the landscape (¢,) and the mean critical gap length among species
(e'). These combinations are (1) g/e” = 1 (diamonds), (2) ¢fe" = 0.5
(triangles), and (3) gfe" = 2 (circles). In combination 2, where ¢ < €',
fully 20% of species in the pool are geographically widespread (>200
range size units), whereas in combination 3, where ¢, > ¢’, almost all
species are very narrowly distributed (<50 range size units). In all cases,
E, = 2. Combinations 1 and 2 equal 0 below B = 6; combination 3
equals 0 below B = 8,

Pareto distributions have been used as models for the size
distributions of lakes (Downing et al. 2006) and other
natural features (Vidondo et al. 1997), so this is at least
a plausible choice for a distribution of gap or patch sizes.
Then,

a—1
a( ) egdx™ " dx
o

epl{a—1)/a}

PrI<Iv)
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~l_n(oz——l) ey
- a ) IO

(18)
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Thus, using the same approach as in case 1,

(2t e
Pr(E(©,) > B) = Pr ({[(a — Dlale ™ g B)

Ha

= o (:1 )[(a; 1)6"]{2(190]1 ef,)} } o)
So
Pr(E@) < B) =
T wn e R I

and by taking the derivative d/dB, we obtain the multi-
species geographic range size distribution as

dIPr (@) < B _ 1(:&)(94_—_1) L
dB Cele e

]

21

X exp

Because « > 1, equation (21) is not an exponential dis-
tribution, but if « is close to 1, then the resulting distri-
bution of geographic range sizes is approximately expo-
nential in form. As was the situation in case 1, the key
ratio e,/e*, which relates the mean gap length in the land-
scape to the mean critical gap length among species, helps
determine both the shape of the geographic range size
distribution and its spatial scale. In figure 3, we again
demonstrate how a fourfold change in this key ratio may
shift the shape of geographic range size distribution. In
this case, however, the same three parameter combinations
all yield range size distributions with fairly heavy tails (i.e.,
a large proportion of widespread species), and moreover,
the curves for the cumulative distribution functions ac-
tually cross. Note again that because this case does not
allow for any constraints on geographic range size due to
critical patch size, from the perspective of the underlying
life-history traits themselves, the key determinants of these
range size distributions are the ratios d/s and K/m (table
1; eq. [6]).
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Figure 3: Geographic range size distribution derived from case 2 (eqq.
[20}], [21]). Three parameter combinations are plotted that examine how
range size distribution depends on the ratio between the mean gap length
of the landscape (e,) and the mean critical gap length among species
(e*). These combinations are (1) gfe’ = 1 (diamonds), (2) efe” = 0.5
(triangles), and (3) e/fe" = 2 (circles). In all cases, E, = 2 and « = 2,

Case 3: Exponential Distributions for Patch Size and Gap
Length in the Landscape and for Critical Patch Size
and Critical Gap Length among Species

In the cases we have considered so far, we have assumed
for simplicity that all patches are larger than the minimal
size needed to support a population of the focal species, -
but it is natural to allow the possibility that some patches
are too small to support populations. Suppose that the
sizes of the patches as well as the lengths of the gaps are

exponentially distributed. If patch sizes follow an expo-

nential distribution with mean E; then Pr(L>L}) =

exp (—L}/E,), where L} is the minimum patch size for spe-

cies . Combining this with equation (13) yields
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Note that E(©,) > 2(E, + ¢,). Continuing as in the earlier
cases, the probability density function for the distribution
of geographic range sizes is
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for B> 2(E, + ¢,) and 0 otherwise (app. B in the online
edition of the American Naturalist). The integral in equa-
tion (23) cannot generally be evaluated in terms of ele-
mentary functions; however, for a range of parameter val-
ues, it can be expressed in terms of incomplete beta
integrals (see app. B; Abramowitz and Stegun 1965), and
for certain parameter values, it can be computed explicitly.
For example, if (E,/E*) = (go/e”) = 1, then the density
function is given by

_2(Ey + e")ln - 2(E, + ¢,)]
B? B

for B> 2(E, + ¢,) and is 0 otherwise, Since In(1 — x) =
~x when x is small, this density is approximately
4(E, + e,)*/B* when B is large. Thus, in this situation, the
distribution with density given by equation (23) is qual-
itatively similar to Pareto distributions for large B (i.e,, the
distribution would decline monotonically but have a heavy
tail compared with an exponential distribution). The ex-
pression in equation (23) can be computed explicitly in
other cases where E,/E™ and e,/e” are integers, again lead-
ing to distributions with asymptotic behavior similar to
Pareto distributions.

Note that because this case allows for constraints on
geographic range size due to both critical patch size and
maximum gap length, all six of the key life-history pa-
rameters (table 1) will influence the shape of the geo-
graphic range size distribution. In this case, the key life-
history determinants of these range size distributions are
(1) the ratio of in-patch diffusion to reproductive rate
(D/r, which determines E*), (2) the ratio of in-matrix
diffusion rate to in-matrix mortality rate (d/s), and (3) the
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ratio of carrying capacity to colonization threshold (K/m;
table 1; eq. [6]).

Discussion

Using equations like those typically used to study invasion
dynamics (e.g., Skellam 1951), we have developed an an-
alytical framnework that links fundamental population-level
ecological traits with the distribution of geographic range
sizes among species. This is admittedly a large conceptual
gulf to bridge with just one mechanistic model. Never-
theless, because of the potentially strong link between de-
mographic processes and species boundaries (Holt et al.
2005), it seems appropriate to construct a model that links
species’ life-history traits with the distribution of geo-
graphic range sizes for a species pool. Although the local
(patch-scale) population dynamics in this model are com-
pletely deterministic, we have considered a fragmented
landscape of patches and gaps in which the spatial het-
erogeneity is itself stochastic. This stochastic spatial struc-
ture, which juxtaposes landscape-level patch and gap char-
acteristics against population-level critical patch sizes and
maximum gap-crossing abilities, determines how far a
novel species can spread from its evolutionary origin.
Given reasonable assumptions about the distribution of
patch and gap lengths in the landscape and about the
distribution of critical patch sizes and critical gap lengths
among species, we can obtain distributions of geographic
range sizes that are qualitatively similar to those found in
nature (Brown et al. 1996; Gaston 2003).

Geographic Ranges and Geographic Range
Size Distributions

The analyses we have outlined afford insights on both the
area occupancy and extent of occurrence measures of geo-
graphic range size (see Gaston 1991). A species’ expected
geographic range size using the extent of occurrence metric
is given by equation (8), whereas the corresponding ex-
pectation for area occupancy would be obtained subtract-
ing the intervening gap lengths, that is,

2E(L)E(r)

EO =5 mera< )

(24

In this framework, endemic species would be those with
small geographic ranges as determined by their encounters
with too-small patches or too-large gaps as the species
expanded from their origin. In these scenarios, endemism
would be expected to be more common for species with
a high rate of leakage across patch boundaries relative to
their population growth rates (high D/r; eq. [3]) or for
highly habitat-specific species that could not tolerate being
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outside a habitat patch and thus had a low rate of move-
ment through the matrix relative to their in-matrix death
rate (low d/s; eq. [6]). In addition, species with low average
densities (low K) would be expected to be endemics, as
would species that have a high threshold density for col-
onization (high m). Of course, endemism in nature may
arise in many ways, including the evolution of habitat or
resource specificity and range contraction by ancient lin-
eages (Nekola 1999). However, it also seems likely that a
broad suite of biotic and abiotic (or physical and evolu-
tionary) mechanisms may act through only a few demo-
graphic parameters to enforce range boundaries (Holt et
al. 2005). Consequently, it is interesting to note that many
of the factors associated with endemism in this model are
likewise associated with different types of spatial rarity in
nature (e.g., Gaston and Blackburn 1996; Cofre et al.
2007).

We emphasize, however, that this modeling framework
would allow species with identical life-history traits to at-
tain very different geographic range sizes, depending on
the specific landscape through which the species were
spreading (which would dictate the distributions of patch
sizes and gap widths that the species would have to contend
with) and depending on the species’ evolutionary origins
(which would dictate the particular sequence of patches
and gaps that species encountered). From this “context-
dependent” perspective, our analytical results concerning
the interplay between landscape structure and dispersal
behavior confirm findings from simulation studies on sto-
chastic neutral landscapes (e.g., Fahrig 1997; King and
With 2002).

Links to Invasion Biology

In this article, we have focused our model development
on the joint problems of geographic range boundaries and
geographic range size. However, given the conceptual and
biological links between the dynamics of biological inva-
sions and the expansion of geographic ranges (e.g., Keitt
et al. 2001), key aspects of our results are equally pertinent
to understanding the spread of invasive species in patchy
landscapes. Our efforts demonstrate that the interplay be-
tween population-level and landscape-level traits can de-
termine not just how fast a species may spread (e.g., Shi-
gesada et al. 1986; Van Kirk and Lewis 1997; Dewhirst and
Lutscher 2009) but also the spatial limits of that spread.

Our results also pertain to the urgent call for improved
understanding of the “landscape ecology of invasive
spread” (With 2002). Nearly 2 decades ago, Mooney and
Drake (1989) argued that the spread of a species through
a patchy environment is likely to depend on the degree
of habitat heterogeneity, size and distribution of patches,
distance between suitable patches, and population char-

acteristics such as growth rate and dispersal ability. The
framework we have presented captures all of these features
and combines them to quantify how a species’ spatial
spread depends on measurable population- and landscape-
level characteristics. Future work should explore how
closely results predicted by this “population dynamics”
perspective of invasive spread in stochastically fragmented
landscapes correspond to predictions from other modeling
frameworks.

Opportunities for Extending the Model

Last, we would emphasize that our model may be devel-
oped further in several ways. For example, as mentioned
in “Model Setup,” our full model does not allow for a
situation in which a species may jump over a nearby too-
small patch and still successfully colonize a sufficiently
large patch remote from the species’ origin. This is an
important limitation of our model because it means that
the geographic range size we calculate for a species that
has both patch size and gap length constraints will be an
underestimate of the true range size that would occur if
jumping over were permissible, As a consequence, a mul-
tispecies distribution of range sizes calculated from our
full model (e.g., case 3) will be necessarily biased down-
ward compared with the true range size distribution (i.e.,
the size distribution will be left shifted). A more detailed
consideration of this issue must wait for another article,
but we note that we have already addressed this issue in
this article in a limited fashion. We did this by constructing
cases 1 and 2 as upper bounds on the general model (ie,
even a tiny patch may be successfully bypassed by an ex-
panding species, and the full extent of a species’ range size
will be constrained only by the presence of a too-big gap
in the landscape). Consequently, for the case of a landscape
with exponentially distributed patch sizes and gap lengths,
the true geographic range size distribution will lie, for a
particular parameter combination, somewhere between
the range size distribution predicted by case 1 and that
predicted by case 3.

This “jumping over” limitation of our model arises as
a direct mathematical consequence of our reliance on the
stopping time approach to the stochastic nature of frag-
mented landscapes and our choice to present results for
a general model. At a technical level, the difficulty emerges
because addressing the jumping over issue would require
knowing how the probability density function for the sum
of the combined gaps compares with the species’ maxi-
mum gap-crossing ability. Such a calculation requires tak-
ing the convolution of the probability densities of the gap
lengths, and explicit calculations are possible only in cer-
tain special cases. A mathematically similar issue arises if
we try to determine the full probability density function



for the range size, as opposed to just computing its mean
and variance.

Another key difference between our modeling approach
and more typical (empirical or theoretical) studies of
species boundaries is that we have completely ignored
the potentially important roles played by biogeographic
gradients of various types (e.g., temperature extremes, eva-
potranspiration potential, densities of resources, compet-
itors, or natural enemies). For example, species interac-
tions may certainly influence species geographic range sizes
in the real world (Galen 1990), and from a modeling per-
spective, there may be some ways forward on this front
because species interactions, such as consumer impacts,
may help set a species’ critical patch size (Cantrell et al.
2001). Alternatively, using the same modeling framework
that we established here, one could impose spatial gra-
dients in any of several life-history traits. For example, in
many species, both local reproductive rate and local den-
sity may vary systematically over large spatial scales {e.g.,
Brown et al. 1995, 1996). Because these measures corre-
spond closely to the parameters r and K in our model and
these in turn help determine both a species’ critical patch
size and its maximum gap-crossing ability (table 1), it
seemns that a reasonable next step may be to consider the
consequences of gradients in life-history traits for modeled
geographic range sizes. Likewise, gradients in patch size
or landscape “gappiness” also occur in nature, and the
imposition of such specific spatial structure in a model
would certainly affect the expectation and variance of geo-
graphic range sizes for particular species (and for distri-
butions of range sizes across species). Many of these spatial
gradient scenarios could not be treated analytically but
could be systematically explored using numerical simu-
lation techniques.

Moreover, similar modeling efforts should also be pos-
sible by exchanging the partial differential equation frame-
work that we adopted for one of several alternative ap-
proaches. For example, our results should be extensible to
discrete-time problems (e.g., seasonal systems) because in-
tegrodifference equations (Kot et al. 1996) can yield critical
patch sizes just as RD models can (Van Kirk and Lewis
1997; Fagan and Lutscher 2006; Fagan et al. 2007). Like-
wise, there may be opportunities for developing a similar
model for the case of geographic ranges in reaction-ad-
vection-diffusion models, which also generate critical
patch sizes (e.g., Lutscher et al. 2005; Pachepsky et al.
2005). Such a model could shed light on the factors gov-
erning the distribution of geographic range sizes in reef
fish (Lester and Ruttenberg 2005; Mora and Robertson
2005; Kiflawi et al. 2006) and other species that inhabit
patchy landscapes in current-dominated systems.

Other extensions of the model, such as considering spa-
tial spread and geographic range size distributions in two
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dimensions, would present substantial analytical chal-
lenges because of the greater difficulty of determining stop-
ping times in two dimensions for generic probability dis-
tributions. Nevertheless, such generalizations are, at least
in principle, possible. Given the potential conceptual and
quantitative integration that is possible with models that
link life-history traits to multispecies geographic range size
distributions, future work on such models seems
warranted.
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